# Tetrazole Studies. Part II. ${ }^{1}$ Crystal Structure of 5-Bromotetrazole 

By Gerald B. Ansell, Chemistry Division, Code 605, Research Department, Michelson Laboratory, Naval Weapons Center, China Lake, California 93555, U.S.A.


#### Abstract

The structure of the title compound has been established by $X$-ray crystallography from diffractometer data. Crystals are monoclinic, space group $P 2_{1} / m$, cell dimensions $a=4.935(5), b=6 \cdot 279(5), c=7 \cdot 446(5), \beta=$ $116.8( \pm 0.2)$. 316 Statistically reliable reflections were refined to $R 0.045$. Within the limits of experimental error the molecule appears to possess $m$-symmetry. Ring bond distances are: C-N $1 \cdot 290$ and $1 \cdot 351, \mathrm{~N}-\mathrm{N} 1 \cdot 283-$ $1 \cdot 347 \AA$. The ring hydrogen could not be located, nor were hydrogen positions indicated by short $\mathrm{N} \cdots \mathrm{N}$ intermolecular contacts or approximately tetrahedral angles at the corresponding nitrogens. Ring distances clearly indicate the tetrazole ring to be a resonance hybrid. The planar molecules form sheets stacked along the $b$ axis with a perpendicular spacing of $1 / 2 b$ ( $3.14 \AA$ ). Data were also refined in space group $P 2_{1}$ to $R 0.044$ and the resulting model did not vary significantly from that obtained using space group $P 2_{1} / m$.


Tetrazoles are good $\pi$-electron donors and form complexes with transition metals. ${ }^{1-6}$ They may also create a certain type of physiological activity by affecting the nervous system. ${ }^{7}$

An $X$-ray crystal structure analysis has been performed on 5 -bromotetrazole since it is one of the lesspolar tetrazoles and is not hydrated. Although we were not expecting to locate the ring hydrogen directly, in a molecule where bromine constitutes $c a .50 \%$ of the electronic content, we wished to establish evidence for ring hydrogen localisation from markedly differing $\mathrm{N}-\mathrm{N}$ and $\mathrm{C}-\mathrm{N}$ bond lengths within the ring, or from the positions of strong $\mathrm{N} \cdots \mathrm{NH}$ hydrogen bonds holding the tetrazole rings in a two- or three-dimensional lattice. Since this compound is one of a series being examined by Raman spectroscopy ${ }^{8}$ a knowledge of the space-group, molecules per unit cell, and molecular geometry with respect to the general crystal morphology was required in order to assign lattice vibrations.

## EXPERIMENTAL

Cell dimensions were measured on a General Electric single-crystal orienter by use of $\mathrm{Cu}-K_{\alpha_{1}}$ and $\mathrm{Cu}-K_{\alpha_{2}} \quad(\lambda=$ 1.54040 and $1.54434 \AA$ ) peaks at room temperature. Errors were estimated from the observed deviations of individual values from their means.

Crystal Data.- $\mathrm{CHBrN}_{4}, \quad M=149$. Monoclinic, $a=$ $4.935(5), \quad b=6 \cdot 279(5), \quad c=7 \cdot 446(5) \quad \AA, \quad \beta=116 \cdot 8\left(1^{\circ}\right)$, (insufficient sample for measurement of $D_{\mathrm{m}}$ ), $Z=2$, $D_{\mathrm{c}}=2.40 . \mu\left(\mathrm{Cu}-K_{\alpha}\right)=128.0 \mathrm{~cm}^{-1}$. Space group $P 2_{1} / m$ (No. 11) with the two molecules occupying special positions of $m$-symmetry at $(x, 1 / 4, z ; \bar{x}, \overline{3} / \overline{4}, \bar{z})$, or $P 2_{1}$ (No. 4) with the two molecules occupying the general equivalent positions $(x, y, z ; \quad x, 1 / 2+y, z)$, from systematic absences $0 k 0$ for $k=2 n+1$. In both cases $b$ was unique.
${ }^{1}$ Part I, G. B. Ansell, J.C.S. Dalton, 1973, 371.
${ }^{2}$ J. H. Nelson, D. L. Schmitt, R. A. Henry, D. W. Moore, and H. B. Jonassen, J. Inorg. Chem., 1970, 9, 2678.
${ }_{3}$ W. P. Felhammer and L. F. Dahl, J. Amer. Chem. Soc., 1972, 3376.
${ }^{4}$ N. C. Baenziger and R. J. Shultz, Inorg. Chem., 1971, 10, 661.
5 R. L. Bodner and A. I. Popov, J. Inorg. Chem., 1972, 11, 1410.
${ }^{6}$ A. P. Gaughan, K. S. Bowman, and Z. Dori, Inorg. Chem., 1972, 11, 601.
${ }^{7}$ F. W. Schueler, S. C. Wang, R. N. Featherstone, and E. G. Gross, J. Pharmacol., 1949, 97, 266.

8 J. Baglin, personal communication.
${ }^{9}$ P. Coppens, L. Leiserowitz, D. P. Ravinobich, Acta Cryst., $1965,8,1035$.

Intensity data were measured for a crystal with an approximated octagonal cross-section with radii perpendicular to the faces of $0.0041,0.00450,0.0050,0.0050 \mathrm{~cm}$ and of length 0.014 cm . The crystal was mounted along 101*. All possible total intensities ( $T_{\mathrm{c}}$ ) were measured for $0<2 \theta \leq 120^{\circ}$ on the automated $1 / 4$ circle General Electric diffractometer equipped with a scintillation counter and pulse-height selection. The moving-crystal, movingcounter $2 \theta$-scan method was used for measuring $T_{c}$ ( 20 scan $=3 \cdot 66^{\circ}$ at $4^{\circ} \mathrm{min}^{-1}$ ). Stationary-crystal, station-ary-counter background counts of $20 \mathrm{~s}\left(B_{1}, B_{2}\right)$ were made at the beginning and end of the 20 scan. The integrated intensity $I$ was calculated as $I=T_{\mathrm{c}}-\left(B_{1}+B_{2}\right) 1.83 \times$ 0.75 . Structure factors were obtained by application of the usual Lorentz and polarisation corrections. Equivalent reflections were averaged after each had been corrected for absorption. ${ }^{9} 325$ Averaged reflections were measured, of which 319 had an average net count $>1.0 \quad \sigma_{\mathrm{av}}\{\sigma=$ $\left.\left[T_{\mathrm{c}}+\left(B_{1}+B_{2}\right)\right]^{1 / 2}\right\}$ and were considered statistically significant. Only these were used in the subsequent structure refinements and Fourier syntheses.

Solution and Refinement of the Structure based on Space Group $\mathrm{P} 2_{1} / \mathrm{m}$.-It is already well established that the tetrazole ring is planar. ${ }^{1,3-6,10-17}$ It was thus assumed that the molecules occupy the position of $m$-symmetry in space group $P 2_{1} / m$. The $x$ and $y$ co-ordinates of the bromine atom were found by solution of a three-dimensional Patterson diagram and the remainder of the molecule (excluding hydrogen) was located by the usual Fourier ${ }^{18}$ and leastsquares procedures. ${ }^{19}$ Full-matrix anisotropic refinement yielded a final $R$ of 0.045 and a weighted value $R^{\prime}$ of 0.049 . During the last cycle of refinement, shifts for all 36 positional and thermal parameters varied were $<0 \cdot 2 \sigma$. A weighing scheme was chosen such that for values of $F_{0}<5 \sqrt{ } w=$ $F_{\mathrm{o}} / 5$, for $5<F_{\mathrm{o}}<15 \sqrt{ } w=1$, and $F_{\mathrm{o}}>15 \sqrt{ } w=15 / F_{\mathrm{o}}$. This results in 105 reflections with $F_{\mathrm{o}} \leq 10$ having average $w \Delta^{2}$ values smaller than those of the remainder, which

10 G. B. Ansell, Chem. Comm., 1970, 684.
${ }^{11}$ N. C. Baenziger, A. D. Nelson, A. Tulinsky, J. H. Bloor, and A. I. Popov, J: Amer. Chem. Soc., 1967, 89, 6467.

12 K. Britts and I. L. Karle, Acta Cryst., 1967, 22, 308.
${ }^{13}$ G. J. Palenik, Acta. Cryst., 1963, 16, 596.
14 J. H. Bryden, Acta Cryst., 1958, 11, 31.
15 J. H. Bryden, Acta. Cryst., 1956, 9, 874.
${ }_{16}$ J. H. Bryden, Acta. Cryst., 1955, 8, 211.
17 Y. Kushi and Q. Fernando, J. Amer. Chem. Soc., 1970, 1965.
18 J . Trotter, World List Crystallographic Computer Programs, 2nd edn., 1966, p. 20.
${ }^{19}$ W. R. Busing, K. O. Martin, and H. A. Levy, A Fortran Crystallographic Least Squares Program, Report ORNL TM 305, Oak Ridge National Laboratory, Tennessee, 1962, modified by W. C. Hamilton.

Table 1
Atomic fractional co-ordinates ( $\times 10^{4}$ ) with estimated standard deviations $\left(\AA \times 10^{4}\right)$ in parentheses

|  | $x$ | $y$ | $z$ |
| :--- | :--- | :---: | ---: |
| Br | $2163(14)$ | 2500 | $4426(11)$ |
| C | $4203(108)$ | 2500 | $7192(100)$ |
| $\mathrm{N}(1)$ | $7116(93)$ | 2500 | $8234(88)$ |
| $\mathrm{N}(2)$ | $7564(100)$ | 2500 | $10154(83)$ |
| $\mathrm{N}(3)$ | $5058(107)$ | 2500 | $10284(87)$ |
| $\mathrm{N}(4)$ | $2803(99)$ | 2500 | $8389(88)$ |

Table 2
Final thermal parameters ( $\times 10$ ) with their estimated standard deviation in parentheses

|  | $\beta_{11}$ | $\beta_{22}$ | $\beta_{33}$ | $\beta_{13}$ |
| :--- | :---: | :---: | :---: | :---: |
| Br | $4887(63)$ | $2463(36)$ | $705(20)$ | $235(30)$ |
| C | $2920(570)$ | $1501(315)$ | $880(206)$ | $740(292)$ |
| $\mathrm{N}(1)$ | $2741(473)$ | $2271(305)$ | $976(182)$ | $507(240)$ |
| $\mathrm{N}(2)$ | $3212(510)$ | $3010(334)$ | $542(169)$ | $173(251)$ |
| $\mathrm{N}(3)$ | $4006(547)$ | $2516(323)$ | $659(182)$ | $\mathbf{4 7 9}(256)$ |
| $\mathrm{N}(4)$ | $3718(529)$ | $2423(318)$ | $753(181)$ | $1(263)$ |

For all atoms, $\beta_{12}=\beta_{23}=0$. The temperature factor is of the form $B=h^{2} \beta_{11}+k^{2} \beta_{22}+l^{2} \beta_{33}+2\left(h k \beta_{12}+h l \beta_{13}+\right.$ $\left.k l \beta_{23}\right)$.

Table 3
Amplitudes of thermal vibration ( $\AA$ ) along the principal axes of vibration ellipsoids. The direction of each principal axis is specified by the angles which it makes with the crystallographic axes $a, b$, and $c$

|  | A | $a$ | $b$ | $c$ |
| :---: | :---: | :---: | :---: | :---: |
| Br | $0 \cdot 124$ | $84 \cdot 8$ | $90 \cdot 0$ | 31.9 |
|  | $0 \cdot 222$ | $90 \cdot 0$ | $0 \cdot 0$ | $90 \cdot 0$ |
|  | $0 \cdot 246$ | $5 \cdot 2$ | $90 \cdot 0$ | 121.9 |
| C | $0 \cdot 138$ | 103.9 | $90 \cdot 0$ | $12 \cdot 8$ |
|  | $0 \cdot 171$ | $13 \cdot 9$ | $90 \cdot 0$ | $102 \cdot 8$ |
|  | 0.173 | $90 \cdot 0$ | $0 \cdot 0$ | 90.0 |
| N(1) | $0 \cdot 145$ | $75 \cdot 0$ | $90 \cdot 0$ | $41 \cdot 7$ |
|  | $0 \cdot 178$ | $15 \cdot 0$ | $90 \cdot 0$ | $131 \cdot 7$ |
|  | 0.212 | $90 \cdot 0$ | $0 \cdot 0$ | 90.0 |
| N(2) | $0 \cdot 108$ | 83.4 | $90 \cdot 0$ | $33 \cdot 4$ |
|  | $0 \cdot 200$ | $6 \cdot 6$ | $90 \cdot 0$ | $123 \cdot 4$ |
|  | $0 \cdot 245$ | $90 \cdot 0$ | $0 \cdot 0$ | $90 \cdot 0$ |
| $\mathrm{N}(3)$ | $0 \cdot 121$ | 91.0 | $90 \cdot 0$ | $25 \cdot 8$ |
|  | $0 \cdot 212$ | 1.0 | $90 \cdot 0$ | 115.8 |
|  | $0 \cdot 224$ | $90 \cdot 0$ | $0 \cdot 0$ | $90 \cdot 0$ |
| N(4) | $0 \cdot 122$ | $76 \cdot 5$ | $90 \cdot 0$ | $40 \cdot 3$ |
|  | $0 \cdot 220$ | $90 \cdot 0$ | $0 \cdot 0$ | $90 \cdot 0$ |
|  | 0.228 | $13 \cdot 5$ | $90 \cdot 0$ | 130.3 |

Bond lengths and angles. The standard deviations for each atom were taken as the root-mean-square of $\sigma(x)$ and $\sigma(z)$. The standard deviation of bond lengths and angles were calculated from the formula given by G. A. Jeffrey and D. W. J. Cruickshank, Quart. Rev., 1953, 7, 335
(a) Bond distances ( $\AA$ )

| (a) Bond distances (A) |  |  |  |
| :---: | :---: | :---: | :---: |
| $\mathrm{Br}-\mathrm{C}$ | $1 \cdot 840(10)$ | $\mathrm{N}(2)-\mathrm{N}(3)$ | $1 \cdot 283(13)$ |
| $\mathrm{C}-\mathrm{N}(1)$ | 1-290(13) | $\mathrm{N}(3)-\mathrm{N}(4)$ | $1 \cdot 347(13)$ |
| $\mathrm{N}(1)-\mathrm{N}(2)$ | $1 \cdot 345(13)$ | $\mathrm{N}(4)-\mathrm{C}$ | $1 \cdot 351(14)$ |
| (b) Bond angles (deg.) |  |  |  |
| $\mathrm{Br}-\mathrm{C}-\mathrm{N}(1)$ | 125.0(8) | $\mathrm{N}(3)-\mathrm{N}(4)-\mathrm{C}$ | 105•3(9) |
| $\mathrm{C}-\mathrm{N}(1)-\mathrm{N}(2)$ | 104.2(9) | $\mathrm{N}(4)-\mathrm{C}-\mathrm{N}(1)$ | 111.4(9) |
| $\mathrm{N}(1)-\mathrm{N}(2)-\mathrm{N}(3)$ | 112.2(9) | $\mathrm{Br}^{-} \mathrm{C}-\mathrm{N}(4)$ | 123.6(8) |
| $\mathrm{N}(2)-\mathrm{N}(3)-\mathrm{N}(4)$ | $106.9(9)$ |  |  |

have fairly similar average $w \Delta^{2}$ values for increasing ranges of $F_{0}$. The 002 and 101 reflections were omitted from the

* For details see Notice to Authors No. 7 in J.C.S. Dalton, 1972, Index issue.
final least-squares calculations since they appeared to suffer from extinction. The $\overline{2} 03$ reflection was also excluded since for some inexplicable reason it gave a large $\Delta$ value which distorted the average $w \Delta^{2}$ values for the range in which it fell. The six weak reflections gave small $F_{\mathrm{c}}$ values. Observed and calculated structure factors are listed in Supplementary Publication No. SUP 20788 (3 pp.).* A difference-Fourier synthesis was featureless, and gave no indication of the hydrogen position.

Final atomic co-ordinates are given in Table 1, thermal parameters in Table 2, thermal amplitudes and vibrations in Table 3, bond lengths and angles in Table 4, and molecular packing and closest intermolecular distances in the Figure.


The packing of the molecules as viewed down the $b$ axis. Closest intermolecular contacts are shown

## DISCUSSION

The planar tetrazole rings lie in sheets perpendicular to the $b$ axis, separated by $3 \cdot 14 \AA$, a distance large enough to preclude any interaction between the sheets. Within the molecules the $\mathrm{C}-\mathrm{N}(1 \cdot 290$ and $1 \cdot 351 \AA$ ) and $\mathrm{N}-\mathrm{N}$ values $(1.345,1.283$, and $1.347 \AA$ ) are all shorter than those normally found for single bonds, and suggest the existence of considerable electron delocalisation as reported for other tetrazole systems. ${ }^{1,3-6,10-17}$ They correspond closely with those of previous determinations, listed in Table 5, which compares tetrazole rings with a variety of substituents at different ring sites, some coordinated to metals and even (c) an ylide configuration. There is a general tendency for $\mathrm{N}(2)-\mathrm{N}(3)$ to be shorter than $\mathrm{N}(1)-\mathrm{N}(2)$ and $\mathrm{N}(3)-\mathrm{N}(4)$. Compound ( $n$ ) appears to be the only one in which the tetrazole bond lengths differ markedly from those of the remaining compounds listed. This is no doubt due to the strongly electron-withdrawing nature of the $\mathrm{CF}_{3}$ group in this compound. There are fairly short intermolecular ${ }^{3}$ distances between $\mathrm{N}(1) \cdots \mathrm{N}(4) 2 \cdot 757$ and $\mathrm{N}(2) \cdots \mathrm{Br}$ $2.960 \AA$ (Figure). However there does not seem to be evidence for hydrogen bonding since the angles at $N(1)$ and $N(2)$ indicate that hydrogen would have to be considerably displaced from the closest line of contact. Within the limits of this determination there is then little evidence for hydrogen ring localisation and the structure appears to have the following resonance forms:


Table 5
Bond distances ( $\AA$ ) and angles (deg.) in various tetrazole derivatives

| Compd. | $\mathrm{C}-\mathrm{N}(1)$ | $\mathrm{N}(1)-\mathrm{N}(2)$ | $\mathrm{N}(2)-\mathrm{N}(3)$ | $\mathrm{N}(3)-\mathrm{N}(4)$ | $\mathrm{N}(4)-\mathrm{C}$ | $\begin{gathered} \mathrm{N}(4)-\mathrm{C}- \\ \mathrm{N}(1) \end{gathered}$ | $\begin{gathered} \mathrm{C}-\mathrm{N}(1)- \\ \mathrm{N}(2) \end{gathered}$ | $\underset{\mathrm{N}(3)}{\mathrm{N}(1)-\mathrm{N}(2)-}$ | $\underset{N(4)}{N(2)-N(3)-}$ | $\frac{\mathrm{N}(3)-\mathrm{N}(4)-}{\mathrm{C}}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| (a) | $1 \cdot 290(13)$ | $1 \cdot 345(13)$ | 1-283(13) | $1 \cdot 347(13)$ | $1 \cdot 351$ (14) | 111.4(9) | 104.2(9) | 112.2(9) | $106.9(9)$ | 105•3(9) |
| (b) | $1 \cdot 337(15)$ | $1 \cdot 349(13)$ | $1 \cdot 313(16)$ | $1 \cdot 351(17)$ | $1 \cdot 326(17)$ | 109.4(1-2) | $107 \cdot 5(1 \cdot 2)$ | $107 \cdot 1(1 \cdot 2)$ | $110 \cdot 2(1 \cdot 2)$ | 106.0(1-2) |
| (c) | $1 \cdot 30(2)$ | $1 \cdot 35(2)$ | 1-31(2) | 1-37(2) | $1 \cdot 31(20)$ | $115(2)$ | 103(2) | 109(2) | 110(2) | 102(2) |
| (d) | 1-36(2) | $1 \cdot 36(6)$ | 1-26(2) | 1-37(2) | $1 \cdot 33(2)$ | 103(1.5) | 112(1.5) | 105(1.5) | 109(2) | 109 (2) |
| (e) | $1 \cdot 30(2)$ | $1 \cdot 34(2)$ | 1-29(2) | 1-33(2) | $1 \cdot 30(2)$ | 109(2) | $109(2)$ | $106(2)$ | $111(2)$ | 106(1) |
| (f) | $1 \cdot 34(4)$ | $1 \cdot 38(5)$ | 1-28(5) | $1 \cdot 39(4)$ | $1 \cdot 33(5)$ | $109(6)$ | 108(6) | 107(6) | 109 (6) | 108(6) |
| (g) | $1 \cdot 329(15)$ | 1-381(15) | $1 \cdot 255(15)$ | $1 \cdot 373$ (15) | 1.321 (15) | 109.8(7) | 106.4(7) | 107•6(7) | 111.1(7) | 105.0(7) |
| (h) | $1 \cdot 329(3)$ | $1 \cdot 348(2)$ | $1 \cdot 310(2)$ | $1 \cdot 348(2)$ | $1 \cdot 329$ (3) | 112.5(2) | 104-3(2) | $109.5(2)$ | 109.5(2) | 104•3(2) |
| (i) | $1 \cdot 318(6)$ | $1 \cdot 356(8)$ | 1-295(7) | $1 \cdot 346$ (6) | $1 \cdot 302(8)$ | $113 \cdot 2$ | $103 \cdot 4$ | $109 \cdot 6$ | $109 \cdot 0$ | $104 \cdot 8$ |
| (j) | $1 \cdot 32(2)$ | $1 \cdot 34(2)$ | $1 \cdot 29(2)$ | $1 \cdot 32(2)$ | $1 \cdot 35(2)$ | 112 | 101 | 114 | 107 | 106 |
| (k) | $1 \cdot 38$ | 1.35 | 1.30 | $1 \cdot 31$ | $1 \cdot 36$ | 106 | 110 | 103 | 117 | 104 |
| (l) | $1 \cdot 360$ (4) | 1-318(3) | $1 \cdot 313(4)$ | 1-318(3) | $1 \cdot 360$ (4) | 112.2(2) | 103.7(3) | 110.2(3) | $110 \cdot 2(3)$ | 103.7(3) |
| (m) | $1 \cdot 321(20)$ | $1 \cdot 370(20)$ | $1 \cdot 290(20)$ | $1 \cdot 357(10)$ | $1 \cdot 327(4)$ | 109(1) | 109 (1) | 106(10) | 112(1) | 105(1) |
| (m) | $1 \cdot 314(20)$ | $1 \cdot 372(20)$ | 1-291(20) | $1 \cdot 346(20)$ | $1-323(20)$ | 107(1) | 107(1) | 109 (1) | 107(1) | 110 (1) |
| (n) | $1 \cdot 372(24)$ | $1 \cdot 425(17)$ | $1 \cdot 119(17)$ | 1-482(20) | $1 \cdot 413(22)$ | 110.0(2) | 106.0(2) | 107(2) | 119(2) | 97(0)(2) |

(a) 5-Bromotetrazole; (b) cis-Bis[dimethyl(phenyl)phosphine]bis-(5-methyltetrazolato)palladium(r1), ref. 1; (c) 5-(3-Chlorobenzyldimethylammonium)tetrazolate, ref. 10; (d) Tetrakis-(l-isopropyltetrazol-5-ato)aurate(IrI) anion, ref. 3; (e) Dichlorobis-(l-methyltetrazole) zinc(ir), ref. 4; (f) Pentamethylentetrazole ICI, ref. 11; (g) 5-Aminotetrazole monohydrate, ref. 12; ( $h$ ) Sodium tetrozolate monohydrate, ref. 13; (i) Hydrazinium-5-aminotetrazolate, ref. 14; (j) 2-Methyl-5-aminotetrazole, ref. 15; ( $k$ ) 1,3-Dimethyl-5aminotetrazole, ref. 16; ( $l$ ) Anhydro-5-mercapto-2,3-diphenyltetrazolium hydroxide, ref. 17; ( $m$ ) Bis[nitratobis(pentamethylenetetrazole)silver(1)], ref. 5: (n) Bis-2-(5-perfluoromethyltetrazolato)- $\ell$-1,2-bis(diphenylphosphino)ethane-bis-[1,2-bis(diphenylphosphino)ethane]dicopper(I), ref. 6.

On the basis of molecular geometry, anisotropic thermal motion is reasonable.

Refinement based on Space Group P2. -When the structure was refined in this space group final $R$ and $R^{\prime}$ values were 0.044 and 0.047 . There were no significant changes in any of the bond lengths or thermal motions. As expected, the estimated errors in the $b$ direction were considerably higher than those in $a$ or $c$,
and it is felt that the model obtained from the $P 2_{1} / m$ refinement more accurately represents the structure.

I thank Professors J. Nelson and J. Baglin for suggesting the problem and supplying the material, and also Dr. R. A. Henry and Professor H. B. Jonassen, all of whom have made helpful suggestions.

